MAAF NC CREATIVE DESIGN MASIH DALAM PERBAIKAN

we expect you to be patient for the inconvenience thanks.This theme is Bloggerized by jayus ernanta - Premiumbloggertemplates.http://jayusgokil.blogspot.com.

MAAF NC CREATIVE DESIGN MASIH DALAM PERBAIKAN

we expect you to be patient for the inconvenience thanks.This theme is Bloggerized by jayus ernanta - Premiumbloggertemplates.http://jayusgokil.blogspot.com.

MAAF NC CREATIVE DESIGN MASIH DALAM PERBAIKAN

we expect you to be patient for the inconvenience thanks.This theme is Bloggerized by jayus ernanta - Premiumbloggertemplates.http://jayusgokil.blogspot.com.

MAAF NC CREATIVE DESIGN MASIH DALAM PERBAIKAN

we expect you to be patient for the inconvenience thanks.This theme is Bloggerized by jayus ernanta - Premiumbloggertemplates.http://jayusgokil.blogspot.com.

MAAF NC CREATIVE DESIGN MASIH DALAM PERBAIKAN

we expect you to be patient for the inconvenience thanks.This theme is Bloggerized by jayus ernanta - Premiumbloggertemplates.http://jayusgokil.blogspot.com.

May 5, 2011

pengertian AJAX


Pengertian Ajax
Menurut Kalimatnya Ajax merupakan singkatan dari Asyncronous Javascript XML( paham ngga? sama saya juga ngga paham
kalau saya sendiri sih lebih senang mengartikan Ajax adalah suatu teknik meload halaman tanpa refesh.
pernah lihat facebook ? (ya pernah lah.. nanyanya ko gini)
ya ketika kita posting status atau menjawab status orang lain kita klik ‘Share’ maka postingan akan segera tampil namun hebatnya halaman tidak refesh. nah seperti itulah contoh ajax.kalau php kita klik akan refresh sebab jalan di server side (wah apa nih artinya)
kalau javascript kita klik tidak refresh namun program hanya jalan di client side
nah ajax inilah yang merangkul keduanya (cie…)
ketika kita klik di aplikasi ajax maka data akan terkirim ke server side sebagaimana php namun tidak refresh sebagaimana javascript tetep anteng , tapi data masuk
begitu kira2 ajaxdi dalam suatu artikel yang saya baca ada kalimat: ” tidak mudah belajar Ajax percayalah”
agaknya kalimat tersebut tidaklah salah Mempelajari Ajax bukanlah hal yang mudah namun bukan juga merupakan hal yang sulit kalau kita mau belajar.

sebaiknya sebelum belajar Ajax disarankan mempelajari terlebih dahulu :

1. Javascript (wajib fardlu ain)
2. XML (terlebih jika datanya XML, maka ini juga wajib)
3. CSS (ini ngga wajib2 amat, yang penting kenal dikit lah, it’s ok)

udah nih , udah siap tempur?
jadi gini saya membagi Ajax ke dalam dua versi (pembagian ini menurutku lho) :
  1. versi pure , atau asli ini murni bener2 javascript, ini kenapa dikatakan tidak mudah , ya ini sebab jika menggunakan versi pure ajax dengan javascript kudu konsentrasi rada tinggi terlebih yang pemula
  2. versi framework, sekarang ini banyak framework-framework ajax berkeliaran (cie.. berkeliaran) di dunia maya. sebutlah yang populer jquery, atau motools, atau pula Xajax dan lain sebagainya. masing-masing menawarkan teknik ajax dengan script lebih simple .

terus kita pakai yang mana nih?

jawabannya kita lihat sikon dan siapa kita
misal sikon kita sedang membangung aplikasi bisnis gede dan waktu mepet maka kita gunakan versi framework
kalau misal waktu senggang dan kita ingin lebih menggali ajax maka saya sarankan memakai ajax pure sebab di situ kekuatan ajax akan tergali berbeda dengan framework yang tinggal memakai.
kemudian siapa kita, kita mau jadi programmer biasa atau luar biasa, kalau hanya programmer mampir di ajax mending pakai framework sebab simple dan efektif, namun kalau kita mau jadi programmer luar biasa sebaiknya kita pakai yang pure syukur-syukur bisa membuat framework sendiri. contoh kecil setingkat google apa mau pakai framework ajax? ya mending bikin sendiri yang lebih hebat kan gitu logika nya
kalau kita mau bener2 hebat ya jangan pakai framework , kita bikin framework. atau bisa pula mengembangkan framework yang sudah ada dimodif dan dikuatkan dengan kita . itu bisa top dibanding tinggal memakai.

May 1, 2011

menguak sekilas asal usul jagat raya

                           kelahiran jagat raya


Persoalan ini menjadi jelas ketika seorang kosmolog Belgia LemaitrL (1931) mengajukan model kosmos yang mengembang. Menurut LemaitrL gerak galaksi adalah bukti bahwa Jagat Raya mengembang. Akhirnya seorang fisikawan Rusia Alexander-Friedmenn memutuskan bahwa Jagat Raya kita memang mengembang. Model Jagat Raya yang mengembang ini disebut Friedmenn dengan istilah expanding universe. Untuk lebih memahaminya, Jagat Raya dapat dianggap sebagai permukaan balon yang membesar. Karena bagian-bagian di permukaan balon ini saling memisah sebagai akibat dari pemompaan atau penggelembungan, hal ini berlaku juga untuk obyek-obyek di ruang angkasa yang saling memisah sebagai akibat dari terus bertambah luasnya alam semesta.


  • Pada tahun 1940-an George Gamow melahirkan konsep Ledakan Dahsyat Panas (The Hot Big-Bang Model). Konsep ini merupakan kelanjutan dari konsep LemaitrL. Gamow menyatakan bahwa masa dini kosmos ditandai dengan suhu dan rapatan yang amat tinggi, namun kemudian suhu dan rapatan itu menurun seiring dengan gerak muaian alam semesta.


Gamow berkesimpulan bahwa sekitar 15 milyar tahun yang lalu galaksi-galaksi di seluruh Jagad-Raya yang diperkirakan ada 100 milyar dan masing-masing rata-rata berisi 100 milyar bintang itu pada awalnya adalah sesuatu yang padu yang kemudian meledak dengan sangat dahsyat. Teori Big-Bang menunjukkan bahwa pada awalnya, semua obyek di Jagat Raya merupakan satu bagian yang padu dan kemudian mengembang dan terpisah-pisah.

agat Raya yang bertambah luas itu bisa menunjukkan bahwa dulunya Jagat Raya  berasal dari suatu titik. Perhitungan menunjukkan bahwa titik tunggal itu mengandung materi yang mempunyai volume nol dan kerapatan yang tak terhingga. Ledakan yang luar biasa dahsyatnya ini menandai awal dimulainya Jagat Raya. Meluasnya Jagat Raya itu merupakan salah satu bukti terpenting bahwa Jagat Raya diciptakan dari ketidakadaan.

Tatkala alam mendingin, karena ekspansinya, sehingga suhunya merendah melewati 1.000 trilyun-trilyun derajat, pada umur 10-35 detik, terjadilah gejala "lewat dingin". Pada saat pengembunan tersentak, keluarlah energi yang memanaskan kosmos kembali menjadi 1.000 trilyun-trilyun derajat, dan seluruh kosmos terdorong membesar dengan kecepatan luar biasa selama waktu 10-32 detik. Ekspansi yang luar biasa cepatnya ini menimbulkan kesan seolah-olah alam kita digelembungkan dengan tiupan dahsyat sehingga ia dikenal sebagai gejala inflasi
 

Karena materialisasi dari energi yang tersedia, yang berakibat terhentinya inflasi, tidak terjadi secara serentak, maka di lokasi-lokasi tertentu terdapat konsentrasi materi yang merupakan benih galaksi-galaksi yang tersebar di seluruh kosmos. Jenis materi apa yang muncul pertama-tama di alam ini tidak seorang pun tahu; namun tatkala umur alam mendekati seper-seratus sekon, isinya  terdiri  atas  radiasi  dan partikel-partikel sub-nuklir.

Pada saat itu suhu kosmos adalah sekitar 100 milyar derajat dan campuran partikel dan radiasi yang sangat rapat tetapi bersuhu sangat tinggi itu lebih menyerupai zat-alir (Fluida) daripada zat padat sehingga para ilmuwan memberikan nama Cosmos Soup. Antara umur satu detik dan tiga menit terjadi proses yang dinamakan nukleosintesis; dalam periode ini atom-atom ringan terbentuk sebagai hasil reaksi fusi-nuklir.


  • Sekitar 380.000 tahun setelah Big-Bang, proton dan elektron bergabung membentuk atom Hidrogen Netral. Jumlah elektron bebas berkurang. Karena partikel penyebarnya (elektron) berkurang, maka penyebaran cahaya atau radiasi juga berkurang. Jadi, Jagat Raya sekitar 380.000 tahun setelah Big-Bang menjadi transparan. Permukaan bola pada jarak 380.000
    tahun setelah Big-Bang disebut “permukaan penyebaran terakhir” atau surface of last scattering.


Kalau kita melihat ke surface of last scattering (berarti ke masa 380.000 tahun setelah big bang), di balik surface of last scattering tidak dapat kita lihat karena Jagat Raya waktu itu tidak transparan. Jagat Raya mulai dari surface of last scattering hingga kita transparan. Dari surface of last scattering itu kita melihat radiasi yang berasal dari Big-Bang yang dikenal sebagai latar belakang gelombang mikrokosmik atau Cosmic Microwave Background disingkat CMB.

Pada tahun 1948, ahli astrofisika kelahiran Rusia, George Gamow, mengemukakan bila kita melihat cukup jauh ke alam semesta, maka kita akan melihat radiasi latar belakang sisa dari Big-Bang. Gamow menghitung bahwa setelah menempuh jarak yang sangat jauh, radiasi itu akan teramati dari Bumi sebagai radiasi gelombang mikro.


  • Pada tahun 1965, Arno Penzias dan Robert Wilson sedang mencoba antena telekomunikasi milik Bell Telephone Laboratory di Holmdel, New Jersey. Mereka dipusingkan oleh adanya desis latar belakang yang mengganggu. Mereka mengecek antena mereka, membersihkan dari tahi burung, tetapi desis itu tetap ada. Mereka belum menyadari desis yang mereka dengar itu berasal dari tepi Jagat Raya. Penzias dan Wilson menelepon astronom radio Robert Dicke di Universitas Princeton untuk minta pendapat bagaimana mengatasi masalah itu. Dicke segera menyadari apa yang didapat kedua orang itu. Telaah oleh Dicke dan rekan-rekannya menunjukkan bahwa radiasi itu tidak lain adalah radiasi sisa masa muda kosmos seperti yang diharapkan Gamow. Segera setelah itu dua makalah dipublikasikan di Astrophysical Journal. Satu oleh Penzias dan Wilson yang menguraikan penemuannya, satu oleh Dicke dan timnya yang memberikan interpretasi. Penzias dan Wilson memperoleh Hadiah Nobel untuk Fisika pada tahun 1978.



  • Penemuan CMB itu dikukuhkan oleh satelit Cosmic Background Explorer (COBE) milik Badan Antariksa Amerika Serikat (NASA). Pengukuran oleh satelit Cobe itu menunjukkan temperatur CMB yang hanya 2,725 derajat Kelvin. Satelit COBE memetakan radiasi itu di segala arah dan ternyata semuanya uniform sampai ketelitian satu dibanding 10.000. Kalau kita mempunyai mata yang peka pada CMB, maka langit seperti dilabur putih, sama di semua arah, mulus sempurna tidak ada noda-nodanya.




Sedemikian seragamnya CMB hingga hanya alat yang sangat sensitif dapat melihat adanya fluktuasi atau ketidakseragaman pada CMB. Untuk itu, NASA telah meluncurkan satelit antariksanya, Wilkinson Microwave Anisotropy Probe (WMAP), yang lebih cermat daripada COBE untuk mempelajari fluktuasi itu. Dengan mempelajari fluktuasi itu, diharapkan kita dapat mengetahui asal mula galaksi-galaksi dan struktur skala besar Jagat Raya dan mengukur parameter-parameter penting dari Big-Bang. Radiasi yang menyebar secara serbasama dan isotropik itu sejauh ini menjadi landasan untuk ketepatan model Ledakan Dahsyat memaparkan masa muda alam semesta. Maka kosmologi masa kini pun bertumpu pada model Ledakan Dahsyat sebagai paradigma utamanya.

Nobel Fisika 2006 semakin me-ngukuhkan teori Big-Bang. Dua ilmuwan antariksa AS John C Mather dan George F Smoot meraih penghargaan Nobel Fisika 2006 dengan penemuannya Teori Gelombang Kejut Energi Pasca terjadinya Big-Bang. sejumlah petunjuk menyangkut bagaimana dan kapan galaksi pertama terbentuk juga sedikit banyak berhasil diungkap.


  • Penelitian mereka mengarah pada radiasi CMB. Ini merupakan gelombang kejut energi yang dikeluarkan dari ledakan dan masih memancarkan radiasi melintasi angkasa yang terus berkembang sementara batas-batas semesta meluas. Radiasi itu memiliki suhu 2,725o K. Dalam kondisi itu, secara perlahan terbentuklah spektrum elektromagnetik, bernama blackbody yakni pola petunjuk energi dari sebuah benda yang mendingin.


Radiasi CMB terjadi bersamaan ketika temperatur di jagad raya semakin rendah yang menciptakan hidrogen atom pada saat 380.000 tahun setelah Big-Bang terjadi. Proses tersebut pada akhirnya memisahkan materi dan senyawa. Dari susunan materi tersebut maka terbentuklah Bintang serta Galaksi. Menurut Prof. Michael Rowan-Robinson, Ketua Royal Astronomical Society Inggris, bahwa temuan itu berhasil mendemonstrasikan secara tepat spektrum blackbody dari CMB dan fluktuasi radiasi kosmik dalam permulaan Jagat Raya.


misteri materi gelap/Dark Matter


Ini adalah salah satu argumen yang lebih kontroversial tentang luar angkasa raya. Fakta unik-nya adalah bahwa misteri alam semesta yang lain masih bergulir. Teorinya adalah bahwa ada suatu jumlah tak terbatas alam semesta, masing-masing diatur oleh seperangkat hukum sendiri dan itulah hukum fisika.
Banyak ilmuwan menolak argumen ini tak lebih dari spekulasi, karena tidak ada bukti atau hukum matematika yang memungkinkan untuk keberadaan alam semesta lain.Namun demikian, penganut teori ini berpendapat bahwa tidak ada yang menyangkal bahwa hal itu baik. Ini adalah salah satu misteri alam yang hanya dapat diatasi jika kita dapat melakukan perjalanan di sana, namun, dengan perluasan alam semesta, maka manusia tidak akan pernah menemukan jawabannya.

  • Persamaan Albert Einstein E = MC ^ 2 mungkin persamaan paling terkenal abad ini. Namun bila diterapkan pada ruang, anomali terjadi. Ketika kita menggunakannya untuk menentukan berapa banyak materi yang alam semesta harus miliki, kita menyadari bahwa kita hanya menemukan empat persen dari materi di alam semesta! Dimana sisanya? Banyak yang percaya adalah dalam bentuk materi gelap. Dimana hal gelap ini? Ini di mana-mana, di mana pun tidak ada masalah yang terlihat. Para ilmuwan belum menunjukkan bukti yang meyakinkan bahwa materi gelap sebenarnya tidak ada. Kenyataan bahwa Anda tidak bisa melihatnya, menyentuhnya,



  • Materi gelap/Dark Matter adalah materi yang tidak dapat dideteksi dari radiasi yang dipancarkan atau penyerapan radiasi yang datang ke materi tersebut, tetapi kehadirannya dapat dibuktikan dari efek gravitasi materi-materi yang tampak seperti bintang dan galaksi. Perkiraan tentang banyaknya materi di dalam alam semesta berdasarkan efek gravitasi selalu menunjukkan bahwa sebenarnya ada jauh lebih banyak materi daripada materi yang dapat diamati secara langsung. Terlebih lagi, adanya materi gelap dapat menyelesaikan banyak ketidakkonsistenan dalam teori dentuman dahsyat
Sebagian besar massa di alam semesta dipercaya berada dalam bentuk ini. Menentukan sifat dari materi gelap juga dikenal sebagai masalah materi gelap atau masalah hilangnya massa, dan merupakan salah satu masalah penting dalam kosmologi modern.
Pertanyaan tentang adanya materi gelap mungkin tampak tidak relevan dengan keberadaan kita di bumi. Akan tetapi, ada atau tidaknya materi gelap ini dapat menentukan takdir terakhir dari alam semesta. Kita mengetahui bahwa sekarang alam semesta mengalami pengembangan karena cahaya dari benda langit yang jauh menunjukkan adanya pergeseran merah. Banyaknya materi biasa yang terlihat di alam semesta tidaklah cukup untuk membuat gravitasi menghentikan pengembangan, dan dengan demikian pengembangan akan berlanjut selamanya tanpa adanya materi gelap. Pada prinsipnya, jumlah materi gelap yang cukup di alam semesta dapat menyebabkan pengembangan alam semesta berhenti, atau kebalikannya (yang akhirnya membawa kita pada Big Crunch). Pada prakteknya, sekarang banyak anggapan bahwa gerakan-gerakan alam semesta didominasi oleh komponen lainnya, energi gelap.dan cahaya dan gelombang radio melewati menembus itu tidak terpengaruh membuat sangat sulit untuk dideteksi, dan fakta unik ini masih akan terus menjadi misteri alam semesta
Dalam rapat federasi astronomi internasional yang diselenggarakan belum lama ini di Sydney, ilmuwan merekomendasikan temuan penelitian ini. Gugusan galaksi tersebut namanya adalah CL0024+1654, merupakan salah satu susunan galaksi yang paling besar di alam semesta. Jaraknya dari bumi 4,5 miliar tahun cahaya, di angkasa menduduki area seukuran bulan purnama, oleh karena terlalu gelap, sehingga tidak bisa diamati dengan mata telanjang.
  • Serupa dengan gugusan galaksi lainnya, 80-85% gugusan galaksi tersebut eksis dengan suatu bentuk materi gelap yang 'tidak terlihat', tidak mengeluarkan energi ke arah luar, hanya bisa memperkirakan melalui efek gravitasi di antara benda yang tampak lain dengannya.
Astronom menggunakan teleskop Hubble mengamati 39 area pada gugusan galaksi tersebut, tetapi pengamatan terutama dipusatkan pada galaksi yang berada di belakang gugusan galaksi. Maksudnya adalah untuk menemukan fenomena medan gravitasi gugusan galaksi itu sendiri terhadap lensa gravitasi yang ditimbulkan galaksi jauh, dengan cara demikian dapat memperhitungkan kondisi penyebaran materi gugusan galaksi dan materi gelap di dalam lingkungan yang berjarak 20 juta tahun cahaya.
Hasil penelitian menunjukkan, bahwa arah pelesir penyebaran massa dalam gugusan galaksi dengan cepat berkurang, ini sama dengan prediksi sebelumnya tentang teori materi gelap dan dingin. Ini menunjukkan bahwa materi gelap mungkin adalah partikel berat yang lamban gerakannya, kalangan akademis menyebutnya sebagai partikel berat yang daya efeknya lemah (WIMPS), partikel ini lebih mudah bersatu dibanding NEUTRINO yang lebih panas dan gerakannya yang lebih cepat.


  • Neutrino adalah suatu partikel dasar Neutrino mempunyai spin 1/2 dan oleh sebab itu merupakan fermion. Massanya sangat kecil, walaupun eksperimen yang terbaru (lihat Super-Kamiokande) menunjukkan bahwa massanya ternyata tidak sama dengan nol. Neutrino hanya berinteraksi lewat interaksi lemah dan gravitasi, tak satu pun lewat interaksi kuat atau interaksi elektromagnetik.

Neutrino tercipta sebagai hasil dari beberapa jenis peluruhan radioaktif tertentu atau sebagai karena reaksi nuklir seperti yang terjadi di Matahari, pada reaktor nuklir, atau ketika sinar kosmik membentur sekelompok atom. Terdapat tiga jenis (atau "cita rasa)" dari neutrino: neutrino elektron, neutrino muon, dan neutrino tauon (atau tau neutrino); dan masing-masing jenis juga memiliki antipartikel yang sesuai, yang disebut antineutrino. Neutrino (atau antineutrino) elektron dihasilkan ketika suatu proton berubah menjadi neutron (atau suatu neutron menjadi proton), yaitu dua bentuk dari peluruhan beta. Interaksi yang melibatkan neutrino dimediasi melalui proses interaksi lemah.
Karena dalam proses interaksi lemah penampang nuklir sangat kecil, neutrino dapat melewati materi nyaris tanpa halangan. Untuk neutrino-neutrino tipikal yang dihasilkan di dalam Matahari (dengan energi beberapa MeV) diperlukan kira-kira satu tahun cahaya (~1016m) timbal untuk memblok setengah dari jumlahnya.

             Neutrino pertama kali dipostulatkan pada Desember, 1930 oleh Wolfgang Pauli untuk menjelaskan spektrum energi dari peluruhan beta, yaitu peluruhan sebuah netron menjadi sebuah proton dan sebuah elektron. Pauli berteori bahwa sebuah partikel yang tak terdeteksi menjadi penyebab perbedaan antara energi dan momentum sudut dari partikel-partikel di awal dan di akhir peluruhan. Karena sifat "hantunya", deteksi eksperimental pertama dari neutrino harus menunggu hingga 25 tahun sejak pertama kali didiskusikan. Pada 1956, Clyde Cowan, Frederick Reines, F. B. Harrison, H. W. Kruse, dan A. D. McGuire mempublikasikan artikel "Detection of the Free Neutrino: a Confirmation" dalam jurnal Science (lihat percobaan neutrino), sebuah hasil yang diganjar dengan Hadiah Nobel 1995
  • Ilmuwan bahkan mendapati, bahwa gugusan galaksi tersebut terus bertambah besar melalui pencaplokan galaksi lainnya, setelah sepekan satu galaksi ditelan, maka materi gelapnya akan menyebar hingga ke seluruh gugusan galaksi.
Saat ini, di pinggir gugusan galaksi tersebut masih ada sejumlah galaksi yang di sekitarnya masih tetap eksis gugusan materi gelapnya sendiri, ini menunjukkan bahwa galaksi-galaksi ini masih berada dalam tahap permulaan ditelan.
Adalah untuk pertama kalinya ilmuwan memberikan gambar penyebaran materi gugusan galaksi yang begitu terperinci. Hasil penelitian ini direncanakan akan dipublikasikan




  • Enstein adalah orang yang mempopulerkan teori ini. Teori ini didasarkan pada penelitian yang ditemukan bahwa jagat raya ini mengembang, seluruh bintang dan planet bergerak saling menjauhi seolah-olah asal mula dari seluruh benda-banda langit ini berasal dari satu titik.

Pada tahun 1915 Enstein menyempurnakan teorinya tentang relativitas, yang kemudian ia terapkan pada pendistribusian zat diruang angkasa. Kemudian di tahun 1917 ada massa bahan yang hampir seragam dimana keseimbangannya tak menentu antara kekuatan gravitasi dan kekuatan dorong kosmis lain yang tak dikenal. Semua ini kemudian dapat dipecahkan pada tahun 1922 oleh ahli fisika Russia. Ia mengatakan bahwa kekuatan tolak tidaklah berperan, bahkan seluruh jagat raya terus mengembang dan bergerak saling menjauhi dengan kecepatan tinggi. Itu menandakan bahwa semua benda yang terdapat di jagat raya ini berasal dari suatu titik dan terjadi semacam ledakan yang maha dahsyat sehingga melontarkan seluruh partikel hasil ledakan tersebut.

  • Teori keadaan tetap

Ahli astronomi Inggris, Hoyle menerangkan bahwa jagat raya tidaklah sama dengan ruang angkasa dan asas kosmologi merupakan dasar dari teori ini. Asas kosmologi diperluas sedemikian rupa sehingga menjadi sempurna dan tidak tergantung pada sejarah tertentu. Teori ini sangat berlawanan dengan teori ledakan hebat, dimana dalam teori ledakan hebat ruang angkasa akan berkembang menjadi kosong karena benda-benda ruang angkasa tersebut bergerak saling menjauh. Akan tetapi dalam teori keadaan tetap, zat baru selalu diciptakan dalam ruang angkasa diantara berbagai galaksi sehingga galaksi baru akan terbentuk mengantikan galaksi lama yang telah menjauh. Zat baru yang dimaksud adalah hidrogen dimana zat tersebut merupakan sumber dari bintang dan galaksi.




  • semua hanya misteri kita sabagai manusia harus bersukur atas keagungan sang pencipta,,

DAFTAR ISI